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Computer simulations of the kinetics of irreversible enzyme
inhibition by an unstable inhibitor
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Computer simulations of the irrversible inhibition of an enzyme by an unstable inhibitor are presented. Data
obtained at the end point of reaction are shown to conform poorly in many situations with relationships
derived from integrated rate equations by setting t = oo, and the implications concerning the experimental
use of this method to determine kinetic constants describing inactivation are considered. The alternative
approach of conducting experiments under conditions of inhibitor excess over enzyme is further discussed,
and a graphical procedure is suggested for the description of time courses of reaction of enzyme with
unstable inhibitor when an enzyme-inhibitor adsorptive complex is involved.

INTRODUCTION

Selective chemical modification of amino acid residues
is a common method for gaining an understanding of the
mechanisms of enzyme catalysis. Kinetic analysis of
enzyme inactivation and modification by irreversible
inhibitors is, however, often complicated by the use of
reagents that are unstable in aqueous solution.
Most studies of irreversible enzyme inhibition are

interpreted in terms of one of two basic mechanisms,
depending on whether reaction between the enzyme (E)
and inhibitor (I) to form an inactive species (E*) is
considered to be a simple bimolecular reaction (eqn. 1)
or to proceed through the intermediacy of an enzyme-
inhibitor adsorptive complex (El) (eqn. 2):

E+I-+E* (1)

k+1 k+2

E+I=EI÷E* (2)
k-I

Equations describing the time-dependent losses of
enzyme activity by these mechanisms for the case of an
inhibitor that is itself hydrolysed in a first-order reaction
are well known.

For Mechanism 1 (eqn. 1):

In a = ki [I]0 (e-k' - 1) (3)kl

where a is the fractional remaining activity at time t, [I],
is the initial inhibitor concentration, and k' is the
pseudo-first-order rate constant for the hydrolysis of the
inhibitor (Purdie & Heggie, 1970; Ashani et al., 1972;
Rakitzis, 1974, 1984).
For Mechanism 2 (eqn. 2):

Ina=k+2 ln Ki+ [I]o ek' (4)

where Ki = (k-l/k+1) is the dissociation constant of the
enzyme-inhibitor complex (Purdie & Heggie, 1970;
Rakitzis, 1974).
One approach to the determination of the kinetic

constants describing these mechanisms has been to
incubate the enzyme with inhibitor for times long enough
to allow the complete disappearance of the inhibitor
before measurements of activity are made (Purdie &
Heggie, 1970; Ashani et al., 1972; Rakitzis, 1974, 1978,
1981, 1984). Accordingly, setting t = oo and rearranging
eqn. (3) simplifies to give:

ln(1/a) = kf Mo (5)

and ki/k' is obtained as the slope of a plot of In (1/a)
versus [I]o (Ashani et al., 1972; Rakitzis, 1974). The
corresponding equation formulated by Rakitzis (1974,
1984) for Mechanism 2 when the further condition
[1]0 > K1 holds is:

log (1/a) = ki log[Io+2. log K. (6)

The slope of a plot of log (1/a) versus log [I1o should
therefore be equal to k+2/k' and the intercept on the
log [I]o axis equal to logKi.
However, this approach, at least as applied to

Mechanism 1, has been criticized recently on the grounds
that over prolonged reaction periods a significant
proportion of the inhibitor will eventually be consumed
in the reaction with the enzyme, thus invalidating the
assumption that the concentration of the inhibitor at any
given moment is governed solely by its rate of hydrolysis
in solution, a necessary condition for the derivation of
eqns. (3) and (4) (Topham, 1985). In reply, Rakitzis
(1985) has claimed that, since enzyme inactivation is a
function of inhibitor concentration, it may safely be
presumed that, in the period obtaining near the end of
the reaction, the proportion of enzyme inactivation will
be small. In order to test this claim, reactions of enzyme
with stable inhibitor have been simulated for both
mechanisms by using a computer, and the data have been
analysed as described above. The relative merits of this
method and a second approach in which experiments are
conducted under conditions such that the inhibitor is
present in excess over the entire observation period are
further discussed, and a graphical procedure is suggested
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Fig. 1. Effect of alteration of total enzyme concentration on

plots of simulated data obtained at the end point of
reaction of enzyme with unstable inhibitor conforming to
Mechanism 1 (eqn. 1)

The rate constants used were: ki = 10.0 m s-1;
k' = 1.0 x 10-4 s-1. Total concentrations of enzyme were:

curve a, 1.0 x 10-6 M; curve b, 1.0 x 10-5 M; curve c,
2.0 x 10-5 M. The continuous line was drawn according to
eqn. (5).
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Fig. 2. Effect of variation in ki/k' on plots of simulated data
obtained at the end point of reaction of enzyme with
unstable inhibitor conforming to Mechanism 1 (eqn. 1)

The total concentration of enzyme used was 1.0 x 10-5 M.

The rate constants used were: curve a, ki = 10.0 M-l s-1;
k'= 2.0x 10-4S-1; curve b, ki= 10.0M- -s-1;
k' = 2.0 x 10-3 s-1. The continuous line was drawn
according to eqn. (5).

for the description of time courses of reactions ofenzyme
with unstable inhibitor conforming to Mechanism 2.

METHODS

There is no analytical solution to the non-linear
differential equations that describe the reaction of
unstable inhibitor with enzyme for either Mechanism 1

or 2. Solutions were computed for selected sets of values
for the rate constants and total reactant concentrations
by means of a variable-order variable-step formulation
of the method of Gear (see Hall & Watt, 1976) for stiff
systems of differential equations, supplied as a subroutine
D02EBF by the Numerical Algorithms Group, Oxford,
U.K., and incorporated into a FORTRAN 1V program.
This subroutine was used previously by Fatania et al.
(1982) in their studies of the displacement of NADPH
from its complex with enzyme by NADP+. The program

gives values for the concentrations of all the species after
25 equal time intervals. Time courses were simulated
from zero time to either 7 ln 2/k' (i.e. 7 half-times for the
hydrolysis reaction) or until the inhibitor concentration
(bound plus free in the case of Mechanism 2) had
decayed to less than 1% of the initial enzyme
concentration, whichever was the greater, at which point
the reaction was considered to be complete. A PDP
11/03 computer (Digital Equipment Co.) was used.
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RESULTS

Computer simulations: Mechanism 1

Reactions of enzyme with various initial concentra-
tions of unstable inhibitor ([I]O) were simulated for long
enough to allow the complete disappearance of the
inhibitor, and the data were plotted according to eqn. (5).
Results obtained with fixed values of ki (10.0 M-I s-1)
and k' (1.0 x 10-4 s-1) at three different total enzyme
concentrations ([E]O) are shown in Fig. 1. Plots are
clearly curvilinear, and deviations from eqn. (5) are most
apparent at high values of [E]O. For fixed [E]O values the
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Fig. 3. Effect of alteration of total enzyme concentration on

plots of simulated data obtained at the end point of
reaction of enzyme with unstable inhibitor conforming to
Mechanism 2 (eqn. 2)

The rate constants used were: k+1 = 1.0 x 107 M-1 * s-';
k-I = 10.0 s-1; k+2 = 5.0 x 1o-4 s-1; k' = 4.0 x 10-4 S-1.
Total concentrations of enzyme were: curve a,
1.0 x 10-6 M; curve b, 5.0 x 10-6 M; curve c, 1.0 x 10-5 M;

curve d, 2.0 x 10-5 M; curve e, 2.5 x 10-5 M. The continuous
line was drawn according to eqn. (6).
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Fig. 4. Effect of variation in Ki on plots of simulated data obtained at the end point of reaction of enzyme with unstable inhibitor
conforming to Mechanism 2 (eqn. 2)

The rate constants used were: k+1 = 1.0X 107 m-v-s1; k+2= 5.Ox 1-40s-s; k' = 2.5 x10-3s-s; (a) k- =1.Os-'; (b)
k-, = 5.0 s-1; (c) k-, = 10.0 s-'; (d) k-1 = 50.0 s-1; (e) k-, = 100.0 s-1. The total concentration of enzyme was 1.0 x 10-5 M-1.
Continuous lines were drawn according to eqn. (6).

relative (but not the absolute) differences between
simulated ln (1/a) values and those predicted by eqn. (5)
become smaller as [I]O is increased. These observations
are consistent with the consumption of a significant
proportion of the inhibitor in the reaction with the
enzyme and lead to an underestimation of the fractional
residual activity for a given value of [I]0. Fig. 2 shows the
effect of increasing k' relative to ki at a fixed [E]O.
Agreement with eqn. (5) is better for small values ofki/k',
partly as a result of the necessity to use larger values of
[I]o to obtain the same degree of inhibition, but it is also
apparent that the relative differences in ln (1/a) at fixed
[I]o values become smaller as ki/k' decreases (see also
curve b in Fig. 1), and this is due to a shift in the reaction
flux with respect to inhibitor towards that predicted by
a simple pseudo-first-order decomposition process.

Computer simulations: Mechanism 2
Analogous simulations were performed for Mech-

anism 2, and the data were plotted according to eqn. (6).
In each case k+1 was assigned a value of 1.0 x 107 M - S-1
and k+2 << k-1, a sufficient condition for the existence of
a quasi-equilibrium between El, E and I over the entire
reaction course (see Cornish-Bowden, 1979; Brockle-

hurst, 1979). The smallest values of [Il] were set equal to
10K1.
As in the case of Mechanism 1, deviations from

eqn. (6) are greatest with high values of [El, with fixed
values for the four rate constants (k+2/k' = 1.25;
Ki = 1.0 x 10-6 M) (Fig. 3), and better agreement is
obtained as [I]O is increased for each curve. It will be
noted that in the general case plots of log(1/a) versus
log[I]o are sigmoid curves. Fig. 4 shows the effect of
changes in K, at fixed values of k+2/k' (0.2) and [E]O
(1.0 x 10-5 M), and it can be seen that the larger K1
becomes the closer the approximation of the simulated
curve to that predicted by eqn. (6). This is to be expected,
since larger values of [I]O are required to attain the same
level of inhibition, and for a given [I]O value a smaller
proportion of the inhibitor will exist as EI (and E*) over
the time course of reaction. A further notable feature of
the curves shown in Fig. 4 is that greater inhibition can
be obtained than is predicted by eqn. (6). This arises as
a result of the existence of elevated concentrations of I
and El over much of the period before the completion of
the reaction compared with those expected for the
hydrolysis of an inhibitor occurring in a straightforward
pseudo-first-order manner. This phenomenon is favoured
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by a decrease in k+2/k' at a particular [I]o value (cf. curve
c of Fig. 3 and Fig. 4c). The use of larger [I]0 values
diminishes the effect in all circumstances.

DISCUSSION
The computer simulation studies show that data

obtained at the end point of reaction of an unstable
irreversible inhibitor with enzyme conform poorly in
many situations with relationships derived from inte-
grated rate equations by setting t = oo. Plots of the data
according to eqns. (5) and (6) were shown to be
curvilinear, and in the general case for Mechanism 2
sigmoid. These deviations from linearity cannot be
attributed to the definition of the end point of reaction
used here, since agreement with eqns. (5) and (6) was best
at high extents of inhibition where any error would be
most manifest, and are actually the result of a logical
contradiction in the formulation of these relationships
(Topham, 1985). Deviations from linearity of the type
shown in Figs. 1 and 2 have been observed experimentally
by Makoff & Malcolm (1981) in their studies of the
modification of denatured aldolase by the water-unstable
compound methyl acetimidate, but were attributed to a
change in pH at high reagent concentrations.

It is clear from this study that attempts to determine
kinetic parameters describing inactivation from appar-
ently linear portions of experimental curves could, in
several cases, generate erroneous values. Use of this
method could also lead one to conclude that inactivation
was in some way enzyme-concentration-dependent (see
Figs. 1 and 3), and genuine enzyme-concentration-
dependency would be difficult to prove. There are,
however, circumstances in which eqns. (5) and (6) are
reasonable approximations, but it would still be essential
to show experimentally that inactivation could be
described by the same kinetic constants at much lower
(or higher) enzyme concentrations for the same range of
initial inhibitor concentrations. In addition, linearity
should be established over a wide range of extents of
inactivation. This may not be possible in the case of
Mechanism 2 when the condition [I]o > K? (Rakitzis,
1974, 1984) is rigorously imposed (see for example curve
a in Fig. 3).
Many of these problems may be circumvented by using

the information that can be gained from a study of the
time course of inactivation under conditions of inhibitor
excess over enzyme concentration and an independent
knowledge of the value of the rate constant for the
hydrolysis of the inhibitor. This is achieved in the case of
Mechanism 1 by plotting enzyme inactivation data
according to eqn. (7), a rearrangement of eqn. (3)
(Topham, 1985):

lna=-k1 [I]ot' (7)
where t' is used to denote (1- e-k't)/k', which has the
dimensions of time. Plots of lna versus t' have been
successfully used to analyse the kinetics of inactivation of
rat liver S-adenosylhomocysteinase (Gomi & Fujioka,
1983), ribulose-1,5-bisphosphate carboxylase/oxygenase
(Paech, 1985) and sheep liver 6-phosphogluconate
dehydrogenase (Topham & Dalziel, 1986) by diethyl
pyrocarbonate. Paquatte & Tu (1986), apparently

unaware of previous work in this area, have proposed the
use of a semi-logarithmic plot of fractional residual
enzyme activity versus (1- e-kt) and have determined
second-order rate constants for the inactivation of
salicylate hydroxylase and bacterial luciferase by diethyl
pyrocarbonate.

In the case of Mechanism 2, the graphical procedure
outlined below, through careful choice of inhibitor
concentration, enables k+2 to be determined independ-
ently of Ki, and then utilizes this value to estimate Ki.
Thus, when [I]Oe-k't > Ki, and hence when [I]O > Ki,
eqn. (4) simplifies to give (Purdie & Heggie, 1970):

lna =-k+2t (8)
and so k+2 can be obtained as the negative slope of a plot
of ln a versus time. It should be noted that the condition
[I]o > Ki is also required for the formulation of eqn. (6)
(Rakitzis, 1974, 1978), and this, regardless of other
considerations, is incompatible with the accurate deter-
mination of Ki, since it involves extrapolation over at
least one order of magnitude. However, Ki may be
determined in a separate experiment in which the
inhibitor is allowed to hydrolyse over a concentration
range of comparable magnitude to Ki. A plot of ak'lk+2
versus [I]Oe-k't (i.e. [I]) is then constructed according to
eqn. (9), a transformation of eqn. (4):

ak'lk+2 = Ki 1+
I

[I]oe-k't (9)Ki+[ K +[II0Ioe
and Ki is obtained as the ratio of the intercept on the
ak'lk+2 axis to the slope. Inspection of eqn. (9) reveals
that, if several [I]O values are chosen, a series of straight
lines will be obtained, all of which intersect the [I]Oe-k't
axis at a value equal to - Ki, and so this may be used to
confirm that the estimates of k' and k+2 are correct.

I am grateful to Dr. K. Dalziel and Professor K. F. Tipton
for helpful discussion and comments.
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